Transitioning Survivors of Childhood Cancer to Adult Endocrine Providers

Charles Sklar, MD
Memorial Sloan-Kettering Cancer Center
New York, NY

Supported by grants from the NIH (U24-CA55727, RO1-CA79024)
Change in Cure Rates of Childhood Cancers by Diagnosis

Hudson MM et al, J Clin. Onc 2014
Childhood Cancers: Survivorship Statistics

- Currently more than 380,000 survivors living in US
- 1 in 530 in the US between ages 20 and 39 yrs is a childhood cancer survivor
- Number of survivors in US will approach 500,000 by 2020
What are the long-term consequences of exposing children and adolescents to radiation therapy and multi-agent chemotherapy?
Spectrum of Health-related and Quality of Life Outcomes

Childhood Cancer Survivor Study

- 37,000 5-Year Survivors
- 1970-99
- Hospital-based
- Treatment data >90%
- Self-report for most outcomes
- Biological samples (7000+)
Factors to be Considered in Risk of Late Effects

- Age
- Gender
- Genetics
- Social
- Other Health
- Lifestyle

CT
RT
S
Radiation-induced abnormalities are, in general, both *dose* and *time* dependent.
Change in Treatment Characteristics over Time (CCSS)

<table>
<thead>
<tr>
<th></th>
<th>Total</th>
<th>1970’s</th>
<th>1980’s</th>
<th>1990s</th>
</tr>
</thead>
<tbody>
<tr>
<td>Radiotherapy</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Any</td>
<td>57%</td>
<td>77%</td>
<td>58%</td>
<td>41%</td>
</tr>
<tr>
<td>Chest</td>
<td>24%</td>
<td>33%</td>
<td>23%</td>
<td>19%</td>
</tr>
<tr>
<td>CNS</td>
<td>30%</td>
<td>39%</td>
<td>33%</td>
<td>19%</td>
</tr>
<tr>
<td>Abdomen</td>
<td>23%</td>
<td>33%</td>
<td>22%</td>
<td>17%</td>
</tr>
<tr>
<td>Chemotherapy</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(%) receiving</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anthracyclines</td>
<td>45%</td>
<td>27%</td>
<td>48%</td>
<td>58%</td>
</tr>
<tr>
<td>Alkylating agents</td>
<td>52%</td>
<td>43%</td>
<td>55%</td>
<td>56%</td>
</tr>
<tr>
<td>Chemotherapy</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(median among receiving)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anthracyclines (mg/m²)</td>
<td>217</td>
<td>323</td>
<td>251</td>
<td>181</td>
</tr>
<tr>
<td>Alkylating agents (CED* g/m²)</td>
<td>7.7</td>
<td>10.5</td>
<td>7.4</td>
<td>7.2</td>
</tr>
</tbody>
</table>

*CED = cyclophosphamide equivalent dose

Cumulative Incidence of Chronic Health Conditions in Survivors, by Grade (n = 10,397)

Multiple Chronic Health Conditions in Survivors, Grade 3-5

Endocrine and Metabolic Complications

- Among most prevalent late effects in survivors of childhood cancer
- Most often seen in survivors treated with:
 - Radiation to head, neck, or pelvis (e.g., brain tumors, Hodgkin lymphoma, TBI stem cell transplant)
 - High-dose alkylating agents (Hodgkin lymphoma, stem cell transplant)
<table>
<thead>
<tr>
<th>Radiotherapy field</th>
<th>Cancer</th>
<th>Outcome*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cranial</td>
<td>Whole brain, total-body irradiation, orbital</td>
<td>HPA-related deficiencies (GH, TSH, ACTH, LH, FSH), obesity, diabetes</td>
</tr>
<tr>
<td>Neck</td>
<td>CRT, total-body irradiation, spinal, neck</td>
<td>Hypothyroidism, hyperthyroidism, thyroid nodules, thyroid cancer</td>
</tr>
<tr>
<td>Abdomen</td>
<td>Whole abdomen, flank, para-aortic, total-body irradiation</td>
<td>Insulin resistance, diabetes, fatty liver</td>
</tr>
<tr>
<td>Pelvis</td>
<td>Pelvis, total-body irradiation</td>
<td>Premature ovarian insufficiency, impaired spermatogenesis, Leydig cell failure</td>
</tr>
</tbody>
</table>

HPA=hypothalamic-pituitary axis. GH=growth hormone. TSH=thyroid-stimulating hormone. ACTH=adrenocorticotropic hormone. LH=luteinising hormone. FSH=follicle-stimulating hormone. CRT=cranial radiotherapy. *Risk for outcome can be dose-dependent.

Table 1: Radiation treatment fields and common endocrine outcomes

ALiCCS: Cumulative risk for a first hospital contact for an endocrine disorder (n=31,723)

- Relative risk of endocrine diagnosis was 4.8 (4.6-5.0 95%CI) in survivors compared to controls.

- The prevalence of endocrine disease by the age of 60 years was 43% in individuals diagnosed with cancer when they were 5-9 years old.

Endocrine Complications

- **Hypothalamic-Pituitary Dysfunction**
 - GH deficiency
 - Early puberty
 - LH/FSH, TSH, ACTH deficiencies
 - Hyperprolactinemia
 - Obesity
- **Thyroid abnormalities**
 - Primary hypothyroidism
 - Hyperthyroidism
 - Thyroid neoplasms
 - Hyperparathyroidism?
- **Gonadal dysfunction**
 - Males
 - Infertility
 - Leydig cell failure
 - Females
 - Acute ovarian failure
 - Premature menopause
- **Bone disease**
 - Osteoporosis
 - Osteonecrosis
 - Rickets
- **Metabolic abnormalities**
 - Insulin insufficiency
 - Insulin resistance/metabolic syndrome/DM
<table>
<thead>
<tr>
<th>Disorder</th>
<th>Radiation Dose (Gy)</th>
</tr>
</thead>
<tbody>
<tr>
<td>GH deficiency</td>
<td>> 18</td>
</tr>
<tr>
<td>LH/FSH deficiency</td>
<td>> 30</td>
</tr>
<tr>
<td>TSH deficiency</td>
<td>> 30</td>
</tr>
<tr>
<td>ACTH deficiency</td>
<td>> 30</td>
</tr>
<tr>
<td>Hyperprolactinemia</td>
<td>> 40-50</td>
</tr>
</tbody>
</table>
Peak GH According to Hypothalamic Dose and Time After RT

Merchant TE, JCO 2011;29:4776
Cumulative Incidence of Hypothalamic-Pituitary Deficits in Survivors Treated with Cranial Radiation: SJLife Cohort (N=748)

- **GH deficiency**
 - No. at risk (No. failed): 748 (102) 646 (37) 538 (97) 255 (94) 37 (18) 0

- **TSH deficiency**
 - No. at risk (No. failed): 743 (24) 719 (15) 595 (10) 266 (6) 38 (1) 0

- **LH/FSH deficiency**
 - No. at risk (No. failed): 731 (17) 714 (11) 593 (20) 262 (23) 39 (8) 0

- **ACTH deficiency**
 - No. at risk (No. failed): 743 (17) 726 (9) 608 (2) 272 (2) 38 (0) 0

Cumulative Incidence of Growth Hormone Deficiency in Survivors Treated with Cranial Radiation: CCSS

Thyroid Abnormalities

Primary Hypothyroidism
Hyperthyroidism
Thyroid cancer
Among 1791 five year survivors in the CCSS, 34% were diagnosed with at least one thyroid abnormality.

Hypothyroidism was the most common abnormality with a relative risk of 17.1 (p<0.001).

Risk factors for hypothyroidism

- Increasing dose of radiation
- Older age at diagnosis
- Female sex
Probability of developing an underactive thyroid after diagnosis of Hodgkin's lymphoma

N=1,791

Sklar et al, JCEM 85:3227, 2000
Thyroid Cancer Risk By Dose of Radiation to the Thyroid

Veiga et al, Radiation Res 2012;178:365
Thyroid Cancer Risk by dose of Radiation to the Thyroid

Survivors vs Siblings

HR 5.9 (3.0-11.6)
Thyroid Cancer Risk by dose of Radiation to the Thyroid

Prevalence of Premature Ovarian Insufficiency in the CCSS

"High-Risk" Exposures*

Ovarian RT
- Age < 12 yrs ov RT > 15 Gy
- Age >/= 12 yrs, ov RT > 10 Gy

CED > 8 gms/m²

Any pelvic RT + CED > 0

*Modified from COG Guidelines

Prevalence of Premature Ovarian Insufficiency in the CCSS

Risk of Diabetes Mellitus in Survivors

Risk of DM in CCSS: Multiple Logistic Regression Model

<table>
<thead>
<tr>
<th>Variable</th>
<th>OR</th>
<th>95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age <4 dx</td>
<td>2.4</td>
<td>1.3-4.6</td>
</tr>
<tr>
<td>Attained age</td>
<td>1.9</td>
<td>1.2-3.1</td>
</tr>
<tr>
<td>BMI, current</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18.5-24.9</td>
<td>1.0</td>
<td>ref</td>
</tr>
<tr>
<td>25-29.9</td>
<td>2.0</td>
<td>1.3-3.0</td>
</tr>
<tr>
<td>> 30</td>
<td>4.3</td>
<td>2.9-6.4</td>
</tr>
<tr>
<td>Inactivity</td>
<td>1.5</td>
<td>1.2-2.1</td>
</tr>
<tr>
<td>AA</td>
<td>1.5</td>
<td>1.1-2.1</td>
</tr>
<tr>
<td>ABD RT</td>
<td>2.7</td>
<td>1.9-3.8</td>
</tr>
<tr>
<td>TBI</td>
<td>7.2</td>
<td>3.4-15.0</td>
</tr>
</tbody>
</table>

Meacham et al, Arch Int Med 2009
Risk of DM in CCSS: Multiple Logistic Regression Model

<table>
<thead>
<tr>
<th>Variable</th>
<th>OR</th>
<th>95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age <4 dx</td>
<td>2.4</td>
<td>1.3-4.6</td>
</tr>
<tr>
<td>Attained age</td>
<td>1.9</td>
<td>1.2-3.1</td>
</tr>
<tr>
<td>BMI, current</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18.5-24.9</td>
<td>1.0</td>
<td>ref</td>
</tr>
<tr>
<td>25-29.9</td>
<td>2.0</td>
<td>1.3-3.0</td>
</tr>
<tr>
<td>> 30</td>
<td>4.3</td>
<td>2.9-6.4</td>
</tr>
<tr>
<td>Inactivity</td>
<td>1.5</td>
<td>1.2-2.1</td>
</tr>
<tr>
<td>AA</td>
<td>1.5</td>
<td>1.1-2.1</td>
</tr>
<tr>
<td>ABD RT</td>
<td>2.7</td>
<td>1.9-3.8</td>
</tr>
<tr>
<td>TBI</td>
<td>7.2</td>
<td>3.4-15.0</td>
</tr>
</tbody>
</table>

Meacham et al, Arch Int Med 2009
Risk of Diabetes Mellitus in Survivors

Trajectory of Medical Follow-up and Development of Chronic Health Conditions Over Time (CCSS)

Prevalence or cumulative incidence *

- Chronic health conditions, any grade
- Cancer-focused visit within past two years

Interval from cancer diagnosis, years

Prevalence or cumulative incidence *

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0 5 10 15 20 25

* GRADE 1-5 CCFU
Transitioning Survivors of Childhood Cancer: Issues to Consider

• Due to long latency between specific exposures and development of some endocrine complications:
 – Many “at risk” survivors (eg, hx of low dose CRT) without identified endocrine issues, nonetheless, require long-term endocrine surveillance
 – Survivors with known endocrine issues may be at risk for additional endocrinopathies over time

• Survivors at high-risk for non-endocrine co-morbidities

• Subset (eg, BT survivors) cognitively impaired
Barriers to Transitioning Survivors of Childhood Cancer to Adult Providers

• **Survivors**
 – Unaware of, or underestimate future risks
 – Lack of access to specialty care
 – Under-employed and under-insured compared to sibs

• **Providers**
 – Knowledge deficits
 – Discomfort managing disease in cancer patient
 – Difficulty obtaining adequate treatment records
Conclusions

- Endocrine complications highly prevalent among survivors of childhood cancer
- Risk for late effects determined largely by the individual’s therapeutic exposures
- Risk for late effects increases over time
- Lifelong surveillance required for those at risk
http://www.survivorshipguidelines.org/
A Resource for Research

- The **Childhood Cancer Survivor Study** is an NCI-funded resource to promote and facilitate research among long-term survivors of cancer diagnosed during childhood and adolescence.
- Investigators interested in potential uses of this resource are encouraged to visit www.stjude.org/ccss
Acknowledgments

MSKCC/NYH
Kevin Oeffinger, MD
Glenn Heller, PhD
Danielle Friedman, MD
Emily Tonorezos, MD

St Jude
Leslie Robison, PhD*
Greg Armstrong, MD*
Daniel Green, MD
Wassim Chemaitilly, MD
Melissa Hudson, MD
Yutaka Yasui, PhD

Emory Univ
Ann Mertens, PhD
Lillian Meacham, MD

MD Anderson
Marilyn Stovall, PhD
Cathy Kasper

FHCRC
Wendy Leisenring, PhD
John Whitton, MA
Eric Chow, MD
Kristy Seidel

NCI
Peter Inskip, SCD
Lene HS Veiga, PhD
Parveen Bhatti, PhD
Alice Sigurdson, PhD
Cecile Ronckers, PhD

CHOP
Goli Mostoufi-Moab, MD